Trial, buy to get premium features

Previous Buy now to get complete version Next
  • Home
uCertify Logo
    • Your cart is empty
    • Continue Shopping
    • View Cart
  • login
  • Signup
    • Help & Support
    • Accessibility
    • Testimonials
  • Powered by uCertify
  • Request Demo
  • Cart 0
    • Your cart is empty
    • Continue Shopping
    • View Cart
  • Hello GuestLogin or Signup
  • Feedback & Support
    • Support
    • Keyboard Shortcuts
    • Send Feedback
Scroll to top button

Pandas for Everyone: Python Data Analysis

(PYTHON-PANDAS.AP1) / ISBN: 978-1-64459-413-1
This course includes
Lessons
TestPrep
LiveLab
Mentoring (Add-on)
D1TXFGYFMH63MH6W_pro.png?1672141091 D1TXFGYFMH63MH6W_pro.png?1672141091
$140
Buy Now
Try this course No credit card required
Are you an instructor? Teach using uCertify products
Request a free evaluation copy

Pandas for Everyone: Python Data Analysis

Pandas is an open-source Python library for data analysis. The Pandas for Everyone: Python Data Analysis course focuses on loading data into Python with the help of the Pandas library. This course contains interactive lessons with knowledge checks, quizzes, and hands-on labs to get a deeper understanding of the concepts such as Pandas DataFrame and Data Structure Basics, Plotting Basics, Tidy Data, Data Assembly, Data Normalization, linear regression, survival models, and so on.
Here's what you will get

Lessons
  • 47+ Lessons
  • 100+ Exercises
  • 90+ Quizzes
  • 109+ Flashcards
  • 109+ Glossary of terms
TestPrep
  • 50+ Pre Assessment Questions
  • 50+ Post Assessment Questions
LiveLab
  • 30+ LiveLab
  • 20+ Video tutorials
  • 43+ Minutes
Here's what you will learn
Download Course Outline
Lesson 1: Preface
  • Breakdown of the Course
  • How to Read This Course
  • Setup
Lesson 2: Pandas DataFrame Basics
  • Introduction
  • Load Your First Data Set
  • Look at Columns, Rows, and Cells
  • Grouped and Aggregated Calculations
  • Basic Plot
  • Conclusion
Lesson 3: Pandas Data Structures Basics
  • Create Your Own Data
  • The Series
  • The DataFrame
  • Making Changes to Series and DataFrames
  • Exporting and Importing Data
  • Conclusion
Lesson 4: Plotting Basics
  • Why Visualize Data?
  • Matplotlib Basics
  • Statistical Graphics Using matplotlib
  • Seaborn
  • Pandas Plotting Method
  • Conclusion
Lesson 5: Tidy Data
  • Columns Contain Values, Not Variables
  • Columns Contain Multiple Variables
  • Variables in Both Rows and Columns
  • Conclusion
Lesson 6: Apply Functions
  • Primer on Functions
  • Apply (Basics)
  • Vectorized Functions
  • Lambda Functions (Anonymous Functions)
  • Conclusion
Lesson 7: Data Assembly
  • Combine Data Sets
  • Concatenation
  • Observational Units Across Multiple Tables
  • Merge Multiple Data Sets
  • Conclusion
Lesson 8: Data Normalization
  • Multiple Observational Units in a Table (Normalization)
  • Conclusion
Lesson 9: Groupby Operations: Split-Apply-Combine
  • Aggregate
  • Transform
  • Filter
  • The pandas.core.groupby. DataFrameGroupBy object
  • Working With a MultiIndex
  • Conclusion
Lesson 10: Missing Data
  • What Is a NaN Value?
  • Where Do Missing Values Come From?
  • Working With Missing Data
  • Pandas Built-In NA Missing
  • Conclusion
Lesson 11: Data Types
  • Data Types
  • Converting Types
  • Categorical Data
  • Conclusion
Lesson 12: Strings and Text Data
  • Introduction
  • Strings
  • String Methods
  • More String Methods
  • String Formatting (F-Strings)
  • Regular Expressions (RegEx)
  • The regex Library
  • Conclusion
Lesson 13: Dates and Times
  • Python's datetime Object
  • Converting to datetime
  • Loading Data That Include Dates
  • Extracting Date Components
  • Date Calculations and Timedeltas
  • Datetime Methods
  • Getting Stock Data
  • Subsetting Data Based on Dates
  • Date Ranges
  • Shifting Values
  • Resampling
  • Time Zones
  • Arrow for Better Dates and Times
  • Conclusion
Lesson 14: Linear Regression (Continuous Outcome Variable)
  • Simple Linear Regression
  • Multiple Regression
  • Models with Categorical Variables
  • One-Hot Encoding in scikit-learn with Transformer Pipelines
  • Conclusion
Lesson 15: Generalized Linear Models
  • About This Lesson
  • Logistic Regression (Binary Outcome Variable)
  • Poisson Regression (Count Outcome Variable)
  • More Generalized Linear Models
  • Conclusion
Lesson 16: Survival Analysis
  • Survival Data
  • Kaplan Meier Curves
  • Cox Proportional Hazard Model
  • Conclusion
Lesson 17: Model Diagnostics
  • Residuals
  • Comparing Multiple Models
  • k-Fold Cross-Validation
  • Conclusion
Lesson 18: Regularization
  • Why Regularize?
  • LASSO Regression
  • Ridge Regression
  • Elastic Net
  • Cross-Validation
  • Conclusion
Lesson 19: Clustering
  • k-Means
  • Hierarchical Clustering
  • Conclusion
Lesson 20: Life Outside of Pandas
  • The (Scientific) Computing Stack
  • Performance
  • Dask
  • Siuba
  • Ibis
  • Polars
  • PyJanitor
  • Pandera
  • Machine Learning
  • Publishing
  • Dashboards
  • Conclusion
Lesson 21: It’s Dangerous To Go Alone!
  • Local Meetups
  • Conferences
  • The Carpentries
  • Podcasts
  • Other Resources
  • Conclusion
Appendix A: Concept Maps
Appendix B: Installation and Setup
  • B.1 Install Python
  • B.2 Install Python Packages
  • B.3 Download Book Data
Appendix C: Command Line
  • C.1 Installation
  • C.2 Basics
Appendix D: Project Templates
Appendix E: Using Python
  • E.1 Command Line and Text Editor
  • E.2 Python and IPython
  • E.3 Jupyter
  • E.4 Integrated Development Environments (IDEs)
Appendix F: Working Directories
Appendix G: Environments
  • G.1 Conda Environments
  • G.2 Pyenv + Pipenv
Appendix H: Install Packages
  • H.1 Updating Packages
Appendix I: Importing Libraries
Appendix J: Code Style
  • J.1 Line Breaks in Code
Appendix K: Containers: Lists, Tuples, and Dictionaries
  • K.1 Lists
  • K.2 Tuples
  • K.3 Dictionaries
Appendix L: Slice Values
Appendix M: Loops
Appendix N: Comprehensions
Appendix O: Functions
  • O.1 Default Parameters
  • O.2 Arbitrary Parameters
Appendix P: Ranges and Generators
Appendix Q: Multiple Assignment
Appendix R: Numpy ndarray
Appendix S: Classes
Appendix T: SettingWithCopyWarning
  • T.1 Modifying a Subset of Data
  • T.2 Replacing a Value
  • T.3 More Resources
Appendix U: Method Chaining
Appendix V: Timing Code
Appendix W: String Formatting
  • W.1 C-Style
  • W.2 String Formatting: .format() Method
  • W.3 Formatting Numbers
Appendix X: Conditionals (if-elif-else)
Appendix Y: New York ACS Logistic Regression Example
Appendix Z: Replicating Results in R
  • Z.1 Linear Regression
  • Z.2 Logistic Regression
  • Z.3 Poisson Regression

Hands on Activities (Live Labs)

Pandas DataFrame Basics

  • Performing Grouped and Aggregated Calculations Using the .groupby() Method

Pandas Data Structures Basics

  • Creating a DataFrame and Making Changes to it

Plotting Basics

  • Creating a Scatter Plot Using Multivariate Data
  • Creating a Density Plot Using Bivariate Data

Tidy Data

  • Using Functions and Methods to Process and Tidy Data

Apply Functions

  • Performing Calculations Across DataFrames
  • Vectorizing Functions

Data Assembly

  • Performing Concatenation Using the concat() Function
  • Merging Multiple Data Sets Using the .merge() Function

Data Normalization

  • Understanding Multiple Observational Units in a Data Set

Groupby Operations: Split-Apply-Combine

  • Performing Data Summarization Using Group-by Operations
  • Performing Boolean Subsetting on the Data
  • Performing Operations on Grouped Objects

Missing Data

  • Finding and Cleaning Missing Data

Data Types

  • Performing Data Type Conversion

Strings and Text Data

  • Finding and Substituting a Pattern

Dates and Times

  • Converting an Object Type into a datetime Type
  • Extracting Date Components from the Data
  • Getting Stock Data and Subsetting it Based on Dates
  • Resampling Dates Using the .resample() Method

Linear Regression (Continuous Outcome Variable)

  • Performing Linear Regression
  • Performing Multiple Regression

Generalized Linear Models

  • Performing Logistic Regression
  • Performing Poisson Regression Using the poisson() Function

Survival Analysis

  • Performing Survival Analysis Using the KaplanMeierFitter() Function

Model Diagnostics

  • Comparing Models Using Cross-Validation

Regularization

  • Performing L1 Regularization Using the Lasso() Function
  • Performing L2 Regularization Using the Ridge() Function

Clustering

  • Performing k-Means Clustering
  • Using Hierarchical Clustering Algorithms
×
uc logo for app downloadDownload our uCertify App [lms_setting_placeholder: This filed is used to set the LMS settings.

Share with your friends and colleagues

We use cookies to enhance your experience. By continuing to visit this site you agree to our use of cookies. More information
Accept